Phagocytic NADPH oxidase overactivity underlies oxidative stress in metabolic syndrome.

نویسندگان

  • Ana Fortuño
  • Gorka San José
  • María U Moreno
  • Oscar Beloqui
  • Javier Díez
  • Guillermo Zalba
چکیده

Oxidative stress plays a critical role in the pathogenesis of atherosclerosis in patients with metabolic syndrome. This study aimed to investigate whether a relationship exists between phagocytic NADPH oxidase activity and oxidative stress and atherosclerosis in metabolic syndrome patients. The study was performed in 56 metabolic syndrome patients (metabolic syndrome group), 99 patients with one or two cardiovascular risk factors (cardiovascular risk factor group), and 28 healthy subjects (control group). NADPH oxidase expression and activity was augmented (P < 0.05) in metabolic syndrome compared with cardiovascular risk factor and control groups. Insulin was enhanced (P < 0.05) in metabolic syndrome patients compared with cardiovascular risk factor and control groups and correlated with NADPH oxidase activity in the overall population. Insulin stimulated NADPH oxidase activity; this effect was abolished by a specific protein kinase C inhibitor. Oxidized LDL and nitrotyrosine levels and carotid intima-media thickness were increased (P < 0.05) in the metabolic syndrome group compared with cardiovascular risk factor and control groups and correlated with NADPH oxidase activity in the overall population. These findings suggest that phagocytic NADPH oxidase overactivity is involved in oxidative stress and atherosclerosis in metabolic syndrome patients. Our findings also suggest that hyperinsulinemia may contribute to oxidative stress in metabolic syndrome patients through activation of NADPH oxidase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanisms for suppressing NADPH oxidase in the vascular wall.

Oxidative stress underlies many forms of vascular disease as well as tissue injury following ischemia and reperfusion. The major source of oxidative stress in the artery wall is an NADPH oxidase. This enzyme complex as expressed in vascular cells differs from that in phagocytic leucocytes both in biochemical structure and functions. The crucial flavin-containing catalytic subunits, Nox1 and Nox...

متن کامل

Spironolactone Inhibits NADPH Oxidase-Mediated Oxidative Stress and Dysregulation of the Endothelial NO Synthase in Human Endothelial Cells

Accumulating evidence indicates that aldosterone plays a critical role in the mediation of oxidative stress and vascular damage. NADPH oxidase has been recognized as a major source of oxidative stress in vasculature. However, the relation between NADPH oxidase in aldosterone-mediated oxidative stress in endothelial cells remains to be ascertained. The present study aimed to investigate the rel...

متن کامل

Spironolactone Inhibits NADPH Oxidase-Mediated Oxidative Stress and Dysregulation of the Endothelial NO Synthase in Human Endothelial Cells

Accumulating evidence indicates that aldosterone plays a critical role in the mediation of oxidative stress and vascular damage. NADPH oxidase has been recognized as a major source of oxidative stress in vasculature. However, the relation between NADPH oxidase in aldosterone-mediated oxidative stress in endothelial cells remains to be ascertained. The present study aimed to investigate the rel...

متن کامل

Increased oxidative stress in obesity and its impact on metabolic syndrome.

Obesity is a principal causative factor in the development of metabolic syndrome. Here we report that increased oxidative stress in accumulated fat is an important pathogenic mechanism of obesity-associated metabolic syndrome. Fat accumulation correlated with systemic oxidative stress in humans and mice. Production of ROS increased selectively in adipose tissue of obese mice, accompanied by aug...

متن کامل

NADPH oxidase mediated oxidative stress in hepatic fibrogenesis

NADPH oxidase (NOX) is a multicomponent enzyme complex that generates reactive oxygen species (ROS) in response to a wide range of stimuli. ROS is involved as key secondary messengers in numerous signaling pathways, and NADPH oxidases complex has been increasingly recognized as key elements of intracellular signaling of hepatic fibrogenesis. In the liver, NADPH oxidase is functionally expressed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Diabetes

دوره 55 1  شماره 

صفحات  -

تاریخ انتشار 2006